RFP for School District Participation in TCIT-U

Illinois Children’s Healthcare Foundation (ILCHF) is partnering with LearnVentures, LLC and Loyola University Chicago to strengthen teachers’ positive impact on the social-emotional and behavioral learning of young children in their classrooms. Toward this end, ILCHF will support the Illinois public school pilot of an evidence-based professional development model for teachers designed to improve both children’s behavioral outcomes and teachers’ skills and confidence in interacting with children. The model is Teacher-Child Interaction Training – Universal (TCIT-U), a professional development program for teachers and classroom support staff of children pre-K through 2nd grade. TCIT-U was initially developed in Illinois and has been successfully implemented in six other States in the US.

One Illinois public school district will be selected to receive resources and a grant to implement TCIT-U beginning in the summer of 2019. The plan is to select an additional district or two additional districts to begin in the summer of 2020. Below is 1) a summary of the TCIT-U teacher training model and its impact on teachers and students; 2) instructions for applying to be a participating school district; and 3) a timeline for application and program implementation.

Teacher Child Interaction Training – Universal (TCIT-U)

TCIT-U is a professional development program that strengthens teachers’ positive relationship and classroom management skills through a sustainable “train-the-trainer” approach.

TCIT-U is adapted from Parent-Child Interaction Therapy (PCIT), a widely used and extensively researched intervention for children 2-7 years old with disruptive behavior problems. TCIT-U applies the positive relationship and behavior management principles shown to be effective with children and their parents in PCIT to teacher-child interactions in an educational setting. TCIT-U helps teachers promote children’s social-emotional development (e.g., sustained attention, task completion, and self-regulation), decrease challenging behaviors, and prevent disruptive behaviors from emerging. As a universal prevention approach, TCIT-U benefits all children in the classroom, rather than only those identified as having behavior problems. Once TCIT-U is established in a classroom setting, components of the intervention can be applied on an individual or small-group basis for children who have specialized needs as part of their IEP.

“Train the trainer” model

TCIT-U’s Train-the-Trainer approach is designed to equip qualified education professionals with the expertise to implement TCIT-U successfully after completing training. Typically, these staff are school psychologists, social workers, counselors, or behavioral health or early education coordinators who are employed by the school district. LearnVentures will train local staff as TCIT-U trainers and coaches to build an effective, well prepared TCIT-U Site Training Team
through a sequence of activities over a twelve (12) to eighteen (18) month period:

- Initial 4-day workshop for up to eight (8) Local TCIT-U Teacher Trainers and Coaches
- Two (2) on-site visits during delivery of TCIT-U by the Local Site Training Team with one cohort of teachers (up to 4 teachers per local trainer, with a maximum of 32 teachers)
- Review and discussion of teacher and child progress and problem-solving in monthly consultation calls
- Competency checks showing understanding and skills at delivering TCIT-U with fidelity
- Delivery of TCIT-U by the Local Site Training Team with a second cohort of teachers either in the spring or in the following fall, again with monthly video/phone consultation.

The Train-the-Trainer model builds a foundation for sustainability and financial value of the school district’s professional development initiatives by preparing local school staff as TCIT-U Trainers and Coaches. The Local Site Training Team will be able to continue to provide training to existing and newly hired teachers, thereby expanding the number of children impacted by TCIT-U. Each member of the Local Site Training Team can train up to four (4) additional teachers per subsequent semester.

Key findings from TCIT-U research

- Positive changes in teachers’ use of observed skills
- Teacher rating of child behavior show significant improvement
- Higher levels of teacher skill change associated with overall higher child protective factor scores
- Teachers report high satisfaction and increased self-efficacy
- Public school personnel successfully implement TCIT-U at levels similar to researchers

TCIT-U has built-in methods for collecting data that are used for monitoring ongoing use of the training strategies and assessing teacher and student changes. This project will include some additional data collection (administrative data and interviews with school staff) to help further understand the impact of the training and how it is implemented in a school district. A focus will be placed in the evaluation of identifying any improvement in student’s learning as a result of the teachers’ changes in classroom interactions and behavior management.

See additional information about the requirements/resources needed for implementation of TCIT-U starting after page 4 and visit the TCIT-U website at www.tcit.org/

Application Process

Criteria for a district to be considered for participation in this TCIT-U demonstration project include:

1) The school district must be in one of the following counties: Boone, Cook, DeKalb, DuPage, Grundy, Kane, Kankakee, Kendall, LaSalle, Lake, McHenry, or Will.

2) The district must have multiple elementary schools with a district-owned pre-K program.
3) The district must be able to commit the teacher/staff time as needed to engage in the training. TCIT-U entails a total of 12 hours of group didactic training plus individualized coaching of teachers over 10-12 weeks or until teachers meet proficiency criteria.

4) The district must participate in evaluation by providing relevant, de-identified/abstracted, student and staff data to the evaluation team and engaging in limited on-site interviews by evaluation team (a few focus groups over the course of the year).

5) The district must work with Loyola University Chicago in obtaining Institutional Review Board and district approval for evaluation purposes.

6) ILCHF will provide a $5,000 stipend to provide support toward equipment, evaluation assessment material, and the cost of substitute teachers.

Application questions

Below are a set of questions for districts to respond to in order to be considered.

1) Name of the district and lead contact person:

2) Names of eligible schools in the district with pre-K through 2nd grade classrooms:

3) Number of eligible school staff (pre-K through 2nd grade teachers and support personnel) to receive TCIT-U training in the eligible schools:

4) Please provide a summary description of the demographics of the student population and other important features of the communities served by the district (500 words):

5) Describe current challenges facing the school district that prompt interest in TCIT-U training and the objectives you hope to accomplish through this professional development initiative (500 words):

6) How will you select the Local Teacher Trainers and Coaches to complete TCIT-U training starting in July of 2019? What criteria and/or strategy will guide your selection process? (see TCIT-U Training Guidelines):

7) How will you select the first cohort of teachers to receive the training?

8) How will you use existing personnel or infrastructure to provide student data to the evaluation team?

9) What steps will you need to take so that this project is IRB approved at the district-level?

10) How will you be able to ensure participating school personnel will have the time to participate?
11) How will you make sure that the costs of participating in this first cohort of TCIT-U are covered?

Application submission instructions
To apply, please access the online application system at ilchf.org under “Grantees & Applicants → Open RFPs”. In addition to addressing the eleven questions listed above, you will be asked to attach the following documents:
 a) Budget worksheet
 b) Officers Certification
 c) Most recent financial audit report
 d) Board of Directors list for organization

Templates for the Budget and Officers Certification can also be found at ilchf.org under “Grantees & Applicants”

The application portal will be open by November 7th, 2018 and the application deadline is January 4th, 2019.

For questions about the application submission process please contact Matt Thullen at mattthullen@ilchf.org.

Timeline for Application and Program Implementation for 2019-2020 School Year

There will be an informational conference call to hear more about this project and to ask questions of LearnVentures, LLC, ILCHF, and the evaluation team. The conference call will take place on November 19th at 11am. To RSVP for the conference call please email Matt Thullen (mattthullen@ilchf.org) at ILCHF. Instructions for dialing into the call will be provided. If you have any questions about the project or application process before or during the conference call that can be addressed during the call send them to (mattthullen@ilchf.org).

<table>
<thead>
<tr>
<th>Key Dates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Online application system open</td>
<td>11/7/18</td>
</tr>
<tr>
<td>Information conference call</td>
<td>11/19/18</td>
</tr>
<tr>
<td>Application deadline</td>
<td>1/4/19</td>
</tr>
<tr>
<td>Decision date</td>
<td>2/22/19</td>
</tr>
<tr>
<td>Start date</td>
<td>5/15/19</td>
</tr>
</tbody>
</table>
These guidelines were developed by Karen Budd and David Stern, joint partners in LearnVentures LLC, for training professionals to develop competence in delivering TCIT-U to teachers. The “TCIT-U Training Guidelines” is a living document that will evolve with continued research and experience in TCIT intervention, training, and dissemination. The guidelines draw heavily on the Training Guidelines for Parent-Child Interaction Therapy, developed in 2009 by the PCIT Training Committee of the National PCIT Advisory Board, and on the Certified PCIT Therapist Training Requirements, an updated version of the PCIT Training Guidelines approved by PCIT International (available at www.pcit.org).

What is Teacher-Child Interaction Training-Universal (TCIT-U)?

TCIT-U is a professional development program for strengthening teachers' relationship skills to promote young children’s social-emotional development. TCIT-U is adapted from Sheila Eyberg's Parent-Child Interaction Therapy (PCIT), an evidence-based treatment for children aged 2-7 years with disruptive behavior (Eyberg & Funderburk, 2011). TCIT-U incorporates the core principles and goals of PCIT while attending to the unique dynamics of the classroom. The term “universal” in TCIT-U emphasizes the model’s universal prevention focus, application to the whole classroom, and inclusion of both teachers and classroom support staff in training. Research on TCIT-U has shown the promise of this approach (e.g., Budd, Garbacz, & Carter, 2016; Garbacz et al., 2014; Gershenson, Lyon, & Budd, 2010; Lyon et al., 2009). Field experience with TCIT-U indicates its applicability both in mainstream settings and across the continuum of special education settings in preschool and elementary classrooms. More details on TCIT-U and our train-the-trainer model are available at www.tcit.org/

Training for Local TCIT-U Teacher Trainers and Coaches

A. Trainee entry requirements
TCIT-U training is designed for both mental health professionals outside the schools and for mental health and/or education professionals employed by schools or early childhood/education agencies. Training as a **Lead Teacher Trainer** qualifies an individual to conduct didactic training sessions and coach teachers. Training as a **Coach** qualifies an individual to coach teachers.

It is recommended that a minimum of two staff members within a single organization or district be trained at one time to provide immediate and continuing support and consultation to one another.

1. **For mental health providers outside schools**, the eligibility criteria are
 - **Education**: a master’s degree or higher, or an international equivalent of a master’s degree, in a mental health field
 OR
 A psychology doctoral student who has completed the third year of training and is receiving supervision from a licensed mental health service provider, and
 - **PCIT Training**: Completion of 40 hours or more of PCIT training by a qualified provider, and
 - **Statement of relationship with local schools/education agencies**: completion of a TCIT-U Planning Sheet describing the schools/agencies where the applicant anticipates providing TCIT, the age range of children served in these settings, and the applicant’s prior experience working with children ages 2-7 in schools or classrooms.

2. **For staff employed by schools or education/early childhood agencies**, the eligibility criteria are
 - **Education**: for **Lead Teacher Trainer**, a master’s degree or higher, or an international equivalent of a master’s degree, in a mental health or education field; and for **Coach**, a Bachelor’s degree, and
 - **Documentation of relationship with schools**: letter of intent from the administration at the applicant’s school or agency to enter into an agreement to begin initial implementation of TCIT.

B. **Qualifications of individuals upon completion of training**

Upon completion of training, trainees are expected to be prepared to function either as **Local TCIT-U Teacher Trainers** or as **Coaches**.

1. **Local TCIT-U Teacher Trainers** are qualified to deliver TCIT-U didactic training and coaching to teachers and educational staff in their school district or education/early childhood agency **OR**, in the case of mental health providers working outside a school district or agency, to provide TCIT-U within their local geographic area (e.g., city or county).
• Local Teacher Trainers are not considered to have the experience or expertise to conduct trainings outside their school district/agency or their local geographic area. To become qualified to train TCIT-U on a regional, national, or international level, individuals must be approved through a process to be defined by Master Trainers Karen Budd and David Stern.
• In addition, Local TCIT-U Teacher Trainers are not considered to have the experience or expertise to train new coaches in their own district/agency or area until they have received further training from a TCIT-U Master Trainer.

2. **TCIT-U Coaches** are qualified to coach teachers and education staff in TCIT-U within their school district or education/early childhood agency.

• Coaches are not considered to have the experience or expertise to deliver TCIT-U didactic training or to coach outside their school district/agency.
• In addition, Local TCIT-U Coaches are not considered to have the experience or expertise to train new coaches in their own district/agency or area until they have received further training from a TCIT-U Master Trainer.

C. **Training activities**

1. **Workshop Training.** Thirty-two (32) hours of training (28 face-to-face and 4 homework/practice) with a TCIT-U Master Trainer that includes an overview of the theoretical foundations of TCIT-U, the goals and priorities of academic settings and the fit of TCIT-U as a preventive intervention, and applicability of TCIT-U for students with special needs; didactic and experiential training in TCIT-U skills; practice coding using the modified DPICS; practice coaching teachers in classrooms; completion of assigned readings and homework exercises; and activities to demonstrate skill acquisition.

2. **Continuation Training.** Following completion of workshop training, Continuation Training occurs over the course of approximately 1 year and focuses on active practice of CDI and TDI skills, coaching, and coding; review of teacher progress and problem-solving while implementing TCIT-U with two groups of teachers; and addressing delivery issues (e.g., teacher engagement) (see competency requirements below). Continuation Training may occur through phone, web-based (e.g., Skype), and/or live consultation with a TCIT-U Master Trainer a minimum of once per month until two cohorts of teachers have been trained. Alternatively, Continuation Training may consist of on-site visits by Master Trainer(s) to deliver CDI and TDI didactic training in partnership with local trainees to the first cohort of teachers, along with phone or web-based consultation between visits and during training of the second cohort of teachers.

• Applicants must work with a minimum of two groups of teachers in the role of Lead Teacher Trainer or Coach. Until then, applicants must remain in at least monthly contact via consultation with a TCIT-U trainer. Trainees should arrange
for continuing consultation with a TCIT-U trainer if they are not able to finish training with two cohorts of teachers within the 12-month period after the Workshop.

- To demonstrate skill development in coaching and supporting teachers outside of didactic sessions, applicants must take primary responsibility for coaching a minimum of two teachers in each of two cohorts of TCIT-U and provide session-specific data on teachers’ progress toward proficiency and mastery of skills during coaching sessions. TCIT-U Master Trainer(s) will review these records during consultation; further, a Master Trainer will watch live or videotaped coaching sessions to assess trainees’ coaching skills.

- To demonstrate skill development in delivering didactic sessions with teachers, trainees seeking qualification as Lead Teacher Trainers must take a leadership role in delivering training according to TCIT-U Training Outlines using TCIT-U Power Point slides, maintain fidelity to the TCIT-U model throughout delivery of intervention, submit completed fidelity checklists of TCIT-U training sessions for both cohorts of teachers, and submit copies of Teacher Evaluation Forms from CDI and TDI Phases. A TCIT-U trainer will review these documents as part of consultation; further a Master Trainer will watch live or videotaped didactic sessions to independently assess fidelity.

3. Evaluation of Training. Trainees are requested to permit Master Trainers to use de-identified data from the workshop and consultation (e.g., skills measures on coding and coaching, tracking and fidelity sheets from teacher training, teacher evaluation forms, and Devereux assessments) in order to facilitate ongoing evaluation and improvement of TCIT-U training.

Competency Criteria for Local TCIT Teacher Trainers and Coaches

By the end of training, trainees should be able to

- Administer and interpret the assessment measures used in TCIT-U (Teacher-Child Interaction Coding System [TCICS], Devereux instruments, Teacher Evaluation Form).

- Achieve 80% reliability with a trainer while observing teacher skills on the TCICS in 5 minutes of live coding or with continuous coding of a criterion video recording.

- Demonstrate proficiency in CDI skills in a 5-minute live interaction with a child or in a role-play with an adult. Proficiency is defined in the TCIT-U Trainer Guide (Budd & Stern, 2016).

- Demonstrate proficiency in TDI skills in a 5-minute live interaction with a child or in a role-play with an adult. Proficiency is defined in the TCIT-U Trainer Guide (Budd & Stern, 2016).

- Role-play the introduction of Sit and Watch in a classroom, and role-play the Sit and Watch sequence with an adult acting as a child.
• Demonstrate competent delivery of training material and effective engagement with teachers during didactic training sessions in CDI and TDI Phases as measured by fidelity checklists.
• Demonstrate adequate and sensitive coaching as observed by the trainer in live or videotaped coaching sessions during CDI and TDI.
• Maintain records of teacher skill use during coaching sessions, and demonstrate ability to accurately interpret and problem-solve teacher progress in use of TCIT-U skills during consultation.

Exceptions

• School, agency, or grant administrators may observe TCIT-U trainings without participating in the experiential components. However, such observation does not qualify administrators to conduct TCIT-U or train others.

For more information

Contact TCIT-U Master Trainers Karen Budd at kbudd@depaul.edu or Dave Stern at dstern2257@gmail.com.

References

Teacher-Child Interaction Training
A Universal Model (TCIT-U)

PROFESSIONAL DEVELOPMENT FOR EDUCATORS AND MENTAL HEALTH PROVIDERS

Karen S. Budd, PhD and David Stern, LICSW

WHAT is TCIT-U?

Teacher-Child Interaction Training Universal, or TCIT-U, is a professional development program for strengthening teachers’ relationship skills to promote children’s social-emotional development. TCIT-U is adapted from Sheila Eyberg’s Parent-Child Interaction Therapy, an evidence-based treatment for children aged 2-7 years with disruptive behavior. TCIT-U incorporates the core principles and goals of PCIT while attending to the unique dynamics of the classroom. We call our model TCIT-U to emphasize its universal prevention focus, application to the whole classroom, and inclusion of both teachers and classroom support staff in training. Research on TCIT-U has shown the promise of this approach as a universal intervention from mainstream across the continuum of special education settings in preschool and elementary classrooms. More details and a video example of TCIT-U in action are at www.tcit.org

GOALS OF TCIT-U:

- Strengthens positive teacher-child interactions
- Promotes positive, nurturing emotional relationships
- Increases teacher’s use of effective behavior management techniques
- Enhances children’s pro-social skills, attachment, and self-regulation
- Decreases disruptive and attention-seeking behaviors
- Increases teachers’ confidence in dealing with challenging classroom behavior and reduces teacher burnout

WHAT SKILLS DO TEACHERS LEARN IN TCIT-U?

- Child-Directed Interaction (CDI)
 - Praise
 - Reflect
 - Imitate
 - Describe
 - Enjoy!
- Teacher-Directed Interaction (TDI)
 - Praising the opposite
 - Effective commands and following through
 - “Sit and watch” for hurting others or repeatedly not listening

HOW ARE TEACHERS TRAINED IN TCIT-U?

Teachers gain proficiency in specific relationship skills through a combination of (a) group didactic and practice-based strategies, and (b) individualized behavioral coaching sessions while interacting with children in routine classroom activities. Teachers have said that the immediate feedback and support they receive in using the skills during coaching is what really helped to solidify their skills. TCIT-U entails a total of 12 hours of group didactic training plus individualized coaching of teachers over 10-12 weeks or until teachers meet proficiency criteria. Once TCIT-U is established in a classroom setting, components of the intervention can be applied on an individualized basis for children who have specialized needs as part of their IEP.
TCIT-U’S PROFESSIONAL DEVELOPMENT MODEL:

Our training is designed to achieve three goals:

- **Doable** – teachers learn and implement the skills
- **Effective** – teacher training leads to positive student outcomes
- **Sustainable** – schools are able to continue implementing the program after training

Research and field testing from 2006 to the present shows that TCIT-U’s model meets these goals.

Research and Implementation of TCIT-U

<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Population Characteristics</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-2009</td>
<td>Urban Daycare (2-5 yrs) in Chicago</td>
<td>Low income, primarily minority</td>
<td>Researcher delivered</td>
</tr>
<tr>
<td>2009 – now</td>
<td>Public Preschools & Kindergartens in MN</td>
<td>Mostly Caucasian, economically diverse</td>
<td>Initially researcher & then school staff delivered</td>
</tr>
<tr>
<td>2011 – 2013</td>
<td>Head Start & Kindergartens in VA</td>
<td>Low income, English as 2nd language</td>
<td>Researcher delivered</td>
</tr>
<tr>
<td>2014 – 2015</td>
<td>Head Start in Chicago and Therapy Program in KS</td>
<td>Low income and maltreated children</td>
<td>Controlled group evaluations by researcher</td>
</tr>
<tr>
<td>2015 – 2018</td>
<td>Regular and Special Education in IA, MIN, WI, FL, ND, & WI</td>
<td>Ethically and economically diverse</td>
<td>School staff delivered</td>
</tr>
</tbody>
</table>

Key Findings from TCIT-U Research

- **Positive changes in teachers’ use of observed skills**
- **Teacher ratings of child behavior show significant improvement after TCIT-U**
- **Higher levels of teacher skill change associated with overall higher child protective factor scores**
- **Teachers report high satisfaction and increased self-efficacy with training**
- **Public school personnel successfully implement TCIT-U at levels similar to researchers**

TCIT-U’s **Train-the-Trainer approach** is designed to equip education and mental health professionals with the expertise to implement TCIT-U successfully after completing training. We train local staff as **TCIT-U trainers and coaches** to build an effective, well prepared TCIT-U Site Training Team through a sequence of activities over a one-year period:

- Initial 4-day workshop
- On-site visits during delivery of TCIT-U with one group of teachers
- Review and discussion of teacher and child progress and problem-solving in consultation calls
- Competency checks showing understanding and skills at delivering TCIT-U with fidelity

We also offer **Advanced Training** to experienced TCIT-U trainers to build increased program capacity.

TCIT-U TRAINING OPPORTUNITIES

For more information about TCIT-U, visit our website at www.tcit.org. School and health administrators interested in considering adoption of TCIT-U should contact karensbudd@gmail.com or Dave Stern at dstern2257@gmail.com for more information about on-site training.
Collaborating with Public School Partners to Implement Teacher–Child Interaction Training (TCIT) as Universal Prevention

Karen S. Budd1 · Lauren L. Garbacz1 · Jocelyn S. Carter1

Abstract This study expands on prior work investigating the transferability of parent–child interaction therapy, an efficacious treatment program targeting parents of children with disruptive behavior problems, for use as a universal preventive intervention targeting classroom teachers. Using a case study design, Teacher–Child Interaction Training (TCIT) was implemented sequentially with two groups of teachers (N = 20) and 169 preschool and kindergarten students in a public school setting. This study served as a pilot test for the feasibility of having local school staff independently implement TCIT, following training and participation in an initial delivery of TCIT conducted by a research team. Controlling for teacher effects, teacher ratings of children’s total protective factor scores (TPF) significantly increased and ratings of behavior concerns (BC) significantly decreased over the course of the intervention. Boys and students qualifying for special education received lower TPF and higher BC ratings at baseline, yet interactions with time were nonsignificant, suggesting that all students improved according to teacher ratings across time. Observational data showed that teachers in both researcher-delivered and local staff-delivered groups substantially increased in their use of positive attention skills following training. Intervention effects, as well as program implementation factors (e.g., teacher attendance, homework completion), were comparable across researcher and school-based staff deliveries, suggesting that school staff were able to implement TCIT effectively. We discuss future research directions for TCIT implementation and development, as well as practical considerations for partnering with school systems.

Keywords Teacher–child interaction training (TCIT) · Early childhood · Teacher–child relationships · Implementation · Universal prevention

Introduction

Children’s early experiences set the stage for their future development. Among the most significant contexts for children’s social experiences outside the family environment are early care and education settings, where children’s relationships with teachers have a strong influence on their behavior. Positive teacher–child relationships in early childhood have been associated consistently with adaptive outcomes for children, whereas negative relationships have been linked to maladaptive outcomes, including poorer grades, less interest in school, and more behavioral and discipline problems (Birch & Ladd, 1997; Buyse, Verschueren, Doumen, Van Damme, & Maes, 2008; Curby, Rudsasill, Edwards, & Perez-Edgar, 2011; Hamre & Pianta, 2001; Mashburn et al., 2008). Research on associations between teacher-child relationships and children’s social and cognitive skill development has fueled policy initiatives to strengthen teacher preparation in positive relationship and classroom management skills and to provide training for those already in the workforce (Institute of Medicine & National Research Council, 2012; Pianta, Belsky, Houts, & Morrison, 2007). This study piloted the feasibility of training local school practitioners to implement Teacher–Child Interaction Training (TCIT), a promising approach designed to enhance teachers’ relationship skills and, in turn, strengthen young children’s social–emotional behavior in early childhood classrooms.
Rationale for Early Childhood Prevention Programs

Longitudinal research suggests that for 50% or more of children who display disruptive behaviors in early childhood, the problems will continue in later school age years (Bennett et al., 1999; Shaw, 2013). However, predicting which children will experience sustained problems is difficult so early in children’s development (Carter, Briggs-Gowan, & Davis, 2004). Thus, it is important that all teachers, not only those serving children with identified difficulties, be equipped with skills to foster children’s development and promote children’s adaptive skills within the classroom environment.

Universal preventive interventions have the potential to strengthen the development of all children, including those at risk due to poverty, family stress, learning difficulties, or early behavior problems (Durlak & Wells, 1997; Wilson & Lipsey, 2007). Meta-analyses of school-based, universal prevention programs designed to strengthen children’s social and emotional learning have found that well-designed, well-implemented programs benefit children in multiple areas, including boosting academic achievement (Durlak, Weissberg, Dymnicki, Taylor, & Schellinger, 2011; Greenberg et al., 2003). Programs using teachers as the primary intervention agents enhance children’s skills within the relational context of teacher–child interactions by integrating the program into the classroom routine and across the whole classroom (Han & Weiss, 2005). Examples of evidence-based prevention programs for early childhood settings include the Chicago School Readiness Project (Raver et al., 2009), which provides teacher training, stress reduction workshops for teachers, and one-on-one, child-focused mental health consultation; teacher training and technical assistance initiatives such as CSEFEL (Center on the Social and Emotional Foundations for Early Learning, http://csefel.vanderbilt.edu/about.html) and My Teaching Partner (Hamre et al., 2012; Pianta, Mashburn, Downer, Hamre, & Justice, 2008); and curriculum-based programs such as PATHS (Promoting Alternative Thinking Strategies) to teach children social skills (Domitrovich, Cortes, & Greenberg, 2007).

Collaborating with Local School Partners on Program Implementation

Reviews of implementation studies in educational and other settings (e.g., Durlak & DuPre, 2008; Fixsen, Blase, Duda, Naom, & VanDyke, 2010) have found that the extent and quality of implementation affect outcomes. A central tenet of several conceptual frameworks for implementation in real-world settings is that effective implementation requires close collaboration between program personnel (i.e., trainers, researchers, or consultants) and school practitioners throughout the design, implementation, and evaluation phases (Han & Weiss, 2005; Wandersman et al., 2008). Community psychologists have long promoted collaborative approaches as essential to facilitating intervention buy-in and engagement by consumers (Trickett & Espino, 2004). Several factors have been identified as important for increasing teachers’ implementation fidelity and the sustainability of quality program implementation (e.g., Forman, Olin, Hoagwood, Crowe, & Saka, 2009; Han & Weiss, 2005). These include school policies and priorities directly linked to the program’s objectives; support from the school director/principal; teachers’ judgments of the acceptability of the program prior to its implementation; high-quality training that includes classroom practice and performance feedback; and programs that are capable and practical for schools to continue with minimal, but sufficient, resources. Limited research has been conducted on models for local implementation of promising programs in early childhood settings (e.g., Baker, Kupersmidt, Voegler-Leeb, Arnold, & Willoughby, 2010; Shernoff & Kratochwill, 2007). In an effort to promote such research, the National Association for the Education of Young Children (NAEYC) and the Society for Research in Child Development (SRCD) issued a position statement calling for implementation research as a priority in early childhood education (NAEYC & SRCD, 2008).

Teacher–Child Interaction Training (TCIT)

The program of interest in the present study is Teacher–Child Interaction Training (TCIT), designed to enhance relationship and behavior management skills in classroom teachers (Gershenson, Lyon, & Budd, 2010). TCIT was adapted from Parent–Child Interaction Therapy (PCIT), an evidence-based intervention for children ages 2–7 with disruptive behavior problems (Eyberg & Child Study Lab, 1999; Eyberg & Funderburk, 2011). The conceptual groundwork for TCIT, as for PCIT, is in theories of child development, social learning, and adult–child attachment (Zisser & Eyberg, 2010). Numerous PCIT outcome studies have demonstrated the positive effects of this parenting intervention on child behavior and on the parent–child relationship (Thomas & Zimmer-Gembeck, 2007).

Analogous to PCIT, TCIT includes two phases: Child-Directed Interaction (CDI), during which teachers learn skills in positive and responsive communication, and Teacher-Directed Interaction (TDI), during which teachers learn to provide effective instructions, follow through consistently, and implement a structured discipline procedure for serious misbehavior. As in PCIT, target skills are introduced first to teachers in didactic sessions, followed by several coaching sessions in which teachers receive immediate,
in vivo feedback on their use of target skills during teacher–child interactions. Coaching has increasingly been recognized as an effective strategy for promoting uptake of skills in professional development programs for teachers (Schultz, Arora, & Mautone, 2015), and research in PCIT has demonstrated the functional role of coaching in parents’ acquisition of skills (Shanley & Niec, 2010). Another standard element of both PCIT and TCIT is behavioral observation of the parent’s or teacher’s use of target skills during adult–child interactions at the beginning of each coaching session. These data inform which skills to work on during coaching and provide a record of skill acquisition.

TCIT applications share PCIT’s conceptual frame and key features but have varied in target populations and procedural details (such as hours spent in didactics and coaching, format of coaching, and specific skills taught). Reviews of TCIT studies provide preliminary support that TCIT is beneficial in increasing positive teacher attention, reducing negative attention, and, in some cases, decreasing children’s disruptive behavior (Fernandez, Gold, Hirsch, & Miller, 2015b; Gershenson et al., 2010). Whereas most TCIT research to date has employed uncontrolled single case designs or multiple baseline designs, a study using random assignment to TCIT or a no-TCIT control condition and entailing more classrooms than in prior studies demonstrated positive changes in teacher behavior, reduced teacher distress, and high teacher satisfaction with TCIT (Fernandez et al., 2015a). Most TCIT research (e.g., Campbell et al., 2010; Fernandez et al., 2008; Filcheck, McNeil, Greco, & Bernard, 2004; McIntosh, Rizza, & Bliss, 2000) has focused on children who have identified behavior problems; however, two studies (Fernandez et al., 2015a; Tiano & McNeil, 2006), in addition to those discussed below, delivered TCIT as a whole classroom approach. Although both studies reported positive effects of TCIT on teacher behavior, Tiano and McNeil (2006) found no significant effects on student behavior, and Fernandez et al. (2015a) found only small effects on child behavior. Both studies used a problem-based measure of student behavior and reported low baseline levels of disruptive behavior, which may have affected the opportunity to detect change. These findings point to the need for further research on TCIT’s impact on child behavior when implemented across the whole classroom.

The current study further investigated TCIT’s feasibility as a whole classroom approach using a universal prevention model. Universal TCIT’s goals are (1) to equip teachers with skills in positive attention and consistent discipline, such that they can confidently handle child behavior challenges in their classrooms; and (2) to increase children’s social-emotional adjustment, thereby enhancing children’s behavioral and academic success (Lyon et al., 2009b). The universal TCIT model was initially studied with 12 teachers and 78 preschool-aged children at an urban daycare center in large, Midwestern city. Using a multiple baseline design across four classrooms, Lyon et al., (2009b) demonstrated systematic increases in teachers’ observed use of target skills in classroom interactions, and teachers rated the program highly in consumer evaluations. This research found some reductions in teachers’ skill use at 2-month follow-up, suggesting the need for booster training. Further, the generally low level of behavior problems prior to intervention may have precluded detection of significant differences following intervention in teacher ratings of child behavior using a problem-based inventory (Lyon, Budd, & Gershenson, 2009a). In a universal TCIT replication with 12 teachers in four early childhood classrooms in the same daycare setting, Garbacz, Zychinski, Feuer, Carter, and Budd (2014) examined the effects of teacher skill change on teacher ratings of child behavior using a problem-based inventory (Lyon, Budd, & Gershenson, 2009a). In a universal TCIT replication with 12 teachers in four early childhood classrooms in the same daycare setting, Garbacz, Zychinski, Feuer, Carter, and Budd (2014) examined the effects of teacher skill change on teacher ratings of child behavior using a standardized, strength-based measure. Results showed significant positive changes in teacher ratings after intervention. In addition, higher levels of teacher skill change, based on systematic observations of teacher–child interactions, were associated with greater teacher-rated improvements in child behavior (Garbacz et al., 2014). Universal TCIT also was implemented with five preschool teachers and 38 children, most of whom spoke English as a second language, in two elementary school classrooms (Devers, Rainear, Stokes, & Budd, 2012). Using a multiple baseline design across classrooms, the authors demonstrated positive changes in observed teacher skills concomitant with intervention. Observations of disruptive behavior in a subgroup of students nominated as challenging by their teachers showed variable levels of disruptive behavior across the study, with generally reduced levels by the end of intervention.

These studies offered preliminary support for the universal model of TCIT and, together with the extensive evidence base behind PCIT, provided a foundation for the model’s further development. Of particular interest in this study was whether local school practitioners could be trained to deliver TCIT. Based on the implementation research described earlier, it was presumed that training local school staff could increase TCIT’s potential for sustainability. The opportunity to carry out the current research arose when the staff of a public school district requested training in TCIT. Whereas in prior TCIT applications, researchers outside the school setting served as trainers, this study is the first to investigate training local school staff to deliver TCIT.

The decision to proceed with an effectiveness study of TCIT using school practitioners at this juncture might be considered premature given limited evidence of the efficacy of child behavior change from TCIT. However, Garbacz et al. (2014) found significant improvement in child behavior following TCIT when using a strength-based measure, which provides initial evidence of a positive impact of classroom-wide TCIT intervention on students. Further, reports of the challenges of scaling up evidence-based programs for
implementation under real-world conditions (Durlak & DuPre, 2008; Evans & Weist, 2004) provide reason for caution about presuming the transferability of efficacy findings to practice settings. This realization has called into question the traditional path of developmental science (i.e., laboratory to efficacy trials to effectiveness trials to dissemination) as an exclusive model. Instead, some researchers and policymakers have recommended the value of research that is embedded from the outset in the “messy reality” of the community context (Dodge, 2011). The current study reflects this alternative path by piloting implementation of TCIT in a public school setting despite the nascent state of the TCIT literature.

The purpose of this research was to provide a preliminary test of the feasibility of having local school staff implement TCIT independently with a second group of teachers after they had participated in initial training delivered by outside researchers. Specifically, we tested two hypotheses: (a) Teacher ratings on a standardized strength-based measure in both the researcher-delivered and local school staff-delivered groups will demonstrate perceived improvement in children’s protective factor and behavioral concerns scores across the intervention period; and (b) Teachers in both groups will show significant increases in observed skill use concomitant with intervention. Due to pragmatic constraints, this study did not include a controlled experimental group design. Instead, repeated observations of teachers’ classroom behavior and teacher ratings of child behavior provided an initial test of the effects of intervention using a case study design.

Method

Setting

Research activities took place in a public school district composed of an early childhood center and six elementary schools serving children from preschool to sixth grade in a Midwestern city of 12,000 residents. Group trainings for participating teachers were conducted in a school conference room, and individualized coaching was conducted in the teachers’ classrooms.

Participants

Principals at participating elementary schools were asked to identify preschool and kindergarten teachers who were respected by their peers and were representative of the teachers employed there as potential study participants, and these teachers were invited to participate. Paraprofessional assistants and resource staff in those classrooms also were invited to participate. All those invited to participate agreed to do so. Approximately 25 % of the eligible teaching staff at each school took part in the study.

Two groups of teachers and children participated in the study, which was approved by the university’s Institutional Review Board. The Fall group consisted of eight teachers and 56 children, and the Spring group consisted of 12 teachers and 113 children. In addition, five staff members (e.g., resource teacher, special education teacher, principal) who had expressed interest in the TCIT model sat in as observers on the Spring group training sessions, but they did not receive coaching and were not included as research participants. Teachers provided informed consent for their data to be included in the study prior to participation. Informed consent was not sought for the children’s participation because no identifiable data were collected on the children.

The 20 teachers included eight lead teachers, nine paraprofessional assistants, and three resource staff (e.g., speech/language pathologist, occupational therapist, special education teacher) who provided instruction in the classrooms. Demographic information on the teachers can be found in Table 1. Teachers received continuing education credits for their participation in TCIT, but they were not paid for their participation or completion of measures.

Child participants, aged 3–6 years, were 55 % male and were evenly split (50 %) between early childhood programs and kindergarten classes. Twenty-two percent of children in the sample received special education services. Individual child ethnicity data were not obtained for confidentiality purposes. The school district reported that in the schools targeted by the intervention, 95–97 % percent of children were Caucasian, 1–3 % African American, 0–1 % Hispanic, and 0–1 % Asian. Between 30 and 47 % of students in the target schools received eligibility for free or reduced lunch.

Trainers

The trainers for the Fall group were TCIT research staff (a doctoral level psychologist and a master’s level social worker) who had extensive training and experience delivering PCIT and TCIT. The trainers for the Spring group were the director of special education, coordinator of behavioral health services, and a social worker, each of whom had advanced degrees in a mental health field and were employed full time by the school district. The local school staff interacted regularly with teachers and children as part of their job responsibilities.

Training of Local School Staff

Joint planning for the TCIT implementation occurred during a series of conference calls between the researchers and local administrative school staff in the summer before
the academic school year in which the study was conducted. As background for learning the TCIT model, the three school staff who served as trainers for the Spring group participated in a 1-week PCIT training workshop 1 month prior to beginning the study. The TCIT researchers travelled to the study site on three occasions in the fall to deliver TCIT to a group of local teachers. The local school staff observed and assisted with group sessions and individual coaching of teachers during the Fall training sequence. In between researchers’ visits, the local school staff conducted coaching sessions with teachers in their classrooms. In the Spring, the local school staff delivered TCIT on their own to a separate group of teachers, consulting with the researchers via conference calls twice per month. At the end of the academic year, the researchers and school staff met to review study findings.

Measures

DECA

The Devereux Early Childhood Assessment (DECA; LeBuffe & Naglieri, 1999) is a 37-item behavior rating scale developed for assessment of social–emotional strengths and behavioral concerns in young children. Each questionnaire typically takes five minutes for teachers to complete. Teachers rated children’s behavior on a five-point Likert-type scale ranging from 0 (never) to 4 (very frequently) to indicate how often within the past 4 weeks a child exhibited various behaviors. The same rater (the lead classroom teacher or teaching assistant) assessed the same children at each time point.

Children’s positive behavior was assessed with 27 items loading onto a Total Protective Factors (TPF) scale. The TPF includes items that load onto three subscales: Initiative, Self-Control, and Attachment. Scores on the three subscales are summed to yield a Total Protective Factors score, with higher scores indicating stronger levels of protective factors. Questions begin with the stem: “During the past 4 weeks, how often did the child…” Sample items include: “choose to do a task that was challenging for her/him,” “handle frustration well,” and “act happy or excited when parent/guardian returned?”

Raters also assessed children’s problem behaviors on a 10-item behavioral concerns screener, with higher scores indicating more disruptive or problematic behaviors. The BC scale includes items such as “fight with other children” and “have temper tantrums.” Internal consistency reliability within the current study’s sample was acceptable across all time points on each scale: TPF (α = 0.86–0.96), and BC (α = 0.78–0.89). The DECA has demonstrated good reliability and validity in several independent psychometric studies and with national standardization samples (Chain, Dopp, Smith, Woodland, & LeBuffe, 2010).

Table 1 shows mean raw scores for each rating scale for Fall and Spring groups.

<table>
<thead>
<tr>
<th>Teacher characteristics</th>
<th>Fall (n = 8) (%)</th>
<th>Spring (n = 12) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Male</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-hispanic white</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master’s degree (e.g., M.S., M.Ed.)</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Some graduate courses</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>25</td>
<td>42</td>
</tr>
<tr>
<td>Associate’s degree</td>
<td>25</td>
<td>8</td>
</tr>
<tr>
<td>Some college</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>M (SD)</td>
<td></td>
<td>M (SD)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>38.00 (11.23)</td>
<td>40.17 (5.07)</td>
</tr>
<tr>
<td>Range</td>
<td>27–55</td>
<td>23–55</td>
</tr>
<tr>
<td>Years of experience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>9.00 (4.93)</td>
<td>6.50 (11.46)</td>
</tr>
<tr>
<td>Range</td>
<td>3–15</td>
<td>1–15</td>
</tr>
</tbody>
</table>

Table 1 Teacher demographic data

The DECA was selected as a child behavior measure based on prior research showing its sensitivity to TCIT.
intervention (Garbacz et al., 2014) and because the DECA’s strengths-based measurement of social-emotional functioning is ideally suited to this study. Few protective measures of child behavior for the classroom have been developed, and no alternative measures with strong psychometric support were identified. However, of the 169 participants in the current study, nine children in the Fall group and 15 in the Spring group (total of 24) were over 6.0 as of the beginning of the school year and an additional 23 in the Spring group had turned six before their baseline, thus placing them outside the age range on which this version of the DECA was normed. A t test comparing the 47 total children over six to the 122 under six at their baseline was nonsignificant for TPF and BC at baseline. For this reason, and in order to represent the entire sample of children exposed to intervention, all children were included in the analyses. Raw scores were used in the analyses to allow for more meaningful modeling of change over time and because some children fell outside the age range for standardized scores.

Teacher Observations

Individual teachers were observed in their classrooms for 5-min behavioral samples an average of one to two times per week. For the Fall group, observers included the two researchers and three local school staff who were learning to become TCIT trainers. For the Spring group, only the three local school staff conducted observations. Observers collected between 2 and 10 behavioral samples on each teacher per phase. Variability in number of teacher observations was typically a result of teachers' availability and scheduling constraints. In addition, more observations were collected on the Fall group due to having both researchers and school staff as observers. Observations took place across a variety of activities, including circle time, free play, group and individual table activities, and transition periods. During baseline observations, teachers were asked to engage in their typical behavior toward children. After TCIT began, teachers were asked to practice using their TCIT skills during observations, most of which occurred immediately prior to coaching sessions.

Observers used a modified version of the Dyadic Parent–Child Interaction Coding System (DPICS-III; Eyberg, Nelson, Duke, & Boggs, 2005) to record teacher behaviors targeted by the intervention. Coded behaviors included Behavioral Descriptions (BD; e.g., “You’re coloring a picture”); Reflections (RF; e.g., a child states, “I’m coloring a tall, strong tree!” and the teacher responds, “You’re coloring a tall, strong tree!”); Labeled Praises (LP; e.g., “Thank you for putting your crayons away.”); Unlabeled Praises (UP; e.g., “Great job!”); Questions (QU; e.g., “What is the first letter in your name?”); and Negative Talk (NTA; e.g., “Stop coloring on the table.”). Observers also recorded commands, follow-through with commands, and child compliance during the second phase of intervention; however, these behaviors were not formally examined as part of the research. Observers tallied teacher behaviors using frequency counts in 5-min observational periods. Observer training in the coding system for the local school staff occurred as part of initial PCIT workshop training and consisted of review of the abridged DPICS-III manual, administration of quizzes from the DPICS-III workbook, and completion of practice observations. Additionally, the researchers provided school staff with practice using the coding system during classroom observations immediately prior to beginning the Fall group.

In 57% of total observations during the Fall group, two observers (typically one researcher and one local school staff) independently coded target behaviors to assess inter-observer agreement. Reliability for observations was calculated based on comparing frequency counts for individual teacher behaviors coded during a 5-min observation and computing the percent agreement. Nonoccurrence of behavior for an entire 5-min period was not counted as

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline</th>
<th>Post-intervention</th>
<th>Follow-up*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>Range</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPF</td>
<td>56.48</td>
<td>11.77</td>
<td>28–80</td>
</tr>
<tr>
<td>BC</td>
<td>7.32</td>
<td>5.12</td>
<td>0–21</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPF</td>
<td>78.69</td>
<td>14.80</td>
<td>38–107</td>
</tr>
<tr>
<td>BC</td>
<td>8.24</td>
<td>6.70</td>
<td>0–31</td>
</tr>
</tbody>
</table>

TPF total protective factor scale, BC behavioral concerns scale

a n = 56
b n = 113
c Fall group follow-up occurred 13 weeks after post-intervention time point. Spring group follow-up occurred 4 weeks after post-intervention time point when school year ended.
agreement and thus did not count toward the reliability index except for Negative Talk, which had a very low base rate. Inter-observer agreement based on reliability observations was as follows: Behavior Descriptions = 0.75, Reflections = 0.81, Labeled Praises = 0.74, Unlabeled Praises = 0.60, Questions = 0.70, and Negative Talk = 0.64. Levels of agreement (0.75–0.81) for the three behaviors of primary research interest, Behavior Descriptions, Reflections, and Labeled Praises, were considered acceptable. No reliability data were collected during the Spring group; however, the trainers for this group had already established reliability with the researchers during the Fall.

Engagement and Satisfaction

Indices of training participation included teacher attendance at group training sessions, number of CDI and TDI coaching sessions completed per teacher, and amount of daily homework practice completed per teacher. Teachers also provided anonymous consumer satisfaction ratings on a Teacher Evaluation Form along six dimensions, each of which was rated on a five-point (0–4) scale, ranging from strongly disagree (0) to strongly agree (4). Dimensions measured included the extent to which (a) the trained skills were useful, (b) training helped the teachers feel more effective in their jobs, (c) the activities utilized in training were helpful to solidify the material, (d) the presenters were knowledgeable, (e) training was organized and clear, and (f) training was useful. All measures used in the current study, including the DECA, the teacher observational coding system, and consumer satisfaction measure, were identical to the versions used in the Garbacz et al. (2014) implementation.

Procedure

The study consisted of four phases: baseline (2–3 days), child-directed interaction (CDI) (approximately 1 month), teacher-directed interaction (TDI) (approximately 1 month), and follow-up (1–3 months). For both groups, teacher observations were collected in baseline, CDI, and TDI phases. Teachers completed a DECA measure for each child at four time points in the Fall group and at three time points for the Spring group: at the beginning of baseline phase, following the completion of the CDI phase (Fall group only), following the completion of the TDI phase, and at follow-up. The follow-up time point for DECA assessment occurred 3 months after the intervention ended for the Fall group and 1 month after the intervention ended for the Spring group due to the ending of the school year. For both groups, consumer satisfaction forms were completed four times across the study: after CDI group sessions, at the end of the CDI phase, after TDI group sessions, and at the end of the TDI phase.

Teacher Training Sequence

The timeline, number, and length of TCIT group sessions varied slightly for the two groups of teachers. For the Fall group, the researchers travelled to the site to conduct training on three adjacent days for the CDI phase, returned for 3 days 1 month later for the TDI phase, and returned again 1 month later for a graduation session. The Fall group teachers attended seven group sessions (three CDI, three TDI, and one graduation) lasting a total of 17 h. For the Spring group, professional development days were used for some sessions. Teachers attended five group sessions, including two CDI and two TDI sessions, and a graduation session, for a total of 12 h. The second TDI session was scheduled for small groups of two to three teachers rather than as a large group (in order to accommodate teachers who came from four different schools). For both Fall and Spring groups, when a teacher missed a session (which was rare), one of the trainers met with the teacher during the following week to cover missed material.

For both groups, one of the trainers met with each of the teachers for individualized coaching sessions in the classroom lasting approximately 20 min. Coaching began after the first CDI group session and occurred an average of 1–2 times per week for teachers in the Fall group and an average of 1 time per week for teachers in the Spring group over the course of 3–4 weeks. TDI coaching sessions began after the first TDI group session and continued for 3–4 weeks until graduation. During the Fall group, the researchers conducted the initial coaching sessions while the local school staff observed. Next, the local school staff took over the coaching responsibility while the researchers observed and provided mentoring, after which the local school staff began to conduct coaching sessions independently. During the Spring group, the local school staff were responsible for conducting all coaching sessions.

TCIT Protocol

The TCIT protocol was adapted from the PCIT treatment manual. A detailed explanation of the changes made to the PCIT protocol is available elsewhere (Gershenson et al., 2010; Lyon et al., 2009b); therefore, only a brief description of the content and procedures is provided here. In didactic sessions, trainers followed a written manual as they taught the conceptual basis for TCIT and the target skills using modeling, descriptive handouts, and role-plays, in which teachers practiced using the skills in simulated teacher–child interactions. Teachers also were assigned to complete homework, which consisted of practicing the skills for 5 min per day in the classroom and recording examples of their use. As in PCIT, the skills covered in the CDI segment were introduced using the acronym PRIDE. Specifically, teachers
learned to provide labeled Praise for the child’s appropriate behavior; Reflect the child’s speech by repeating, paraphrasing, or expanding upon a child’s words or phrases; Imitate appropriate behaviors by engaging in the same activities as the child; Describe the child’s current appropriate behavior; and convey Enthusiasm when interacting with children. Teachers also learned to reduce unnecessary questions and commands, selectively ignore inappropriate behavior, and refrain from negative talk.

The TDI phase focused on effective use of behavior management strategies, including direct commands and consistent follow-through. Teachers learned to implement a “Sit & Watch” procedure (Lyon et al., 2009b; Porterfield, Herbert-Jackson, & Risley, 1976) in their classrooms as a consequence for serious disruptive or unsafe behaviors. Teachers followed a scripted procedure for instructing a child to sit on a chair placed at the periphery of the activity area and watch how the other children played appropriately. The specific behaviors leading to Sit and Watch, as well as the length of time children sat and watched, was collaboratively determined by teachers in each classroom during a planning session; however, the recommended time was 1 min.

Individual coaching sessions took place during natural classroom situations, such as during lessons with an individual child, small group activities, or whole class instruction. Trainers coded teachers’ skill use during the first 5 min of coaching sessions to assess skill progress and establish a focal point for coaching based on the skills with the lowest observed frequency during coding. For the next 10–15 min, trainers provided immediate verbal feedback and support as the teacher interacted with children. During coaching, trainers used labeled Praise (e.g., “Great reflection!”) to pinpoint and reinforce teachers’ use of skills as situations occurred (e.g., “Perfect job of following through with labeled praise when she did what you asked”). On occasion, trainers selectively prompted teachers about an opportunity to use a skill (e.g., “Notice how well Jamie and Sara are sharing. What could you say to reinforce this behavior?” or during TDI, “Give him a direct command to come back to the table”). Coaches also commented on children’s behavior in relation to teacher behavior (e.g., “You’re really keeping them engaged with your positive attention”). Immediately following most coaching sessions, trainers met with teachers briefly (3–5 min) to discuss the session or to solve problem about individual children’s behavior when necessary.

Data Analysis

All analyses were conducted using SPSS statistical software, version 20. We used longitudinal multilevel modeling (MLM; Singer & Willett, 2003) to account for the nested design of children within classrooms and to examine growth rates across multiple measurement points for teacher-reported measures of behavior. Multilevel modeling is well suited for longitudinal analyses when there are three or more waves of data, and when measurement occasions are not evenly spaced, as was the case in the current study. Multilevel modeling requires less stringent assumptions to be met than repeated measures analysis of variance (Singer & Willett, 2003).

Models were built separately for each scale on the DECA, i.e., protective factors (TPF) and BC. First, unconditional models were tested without any predictor variables in order to compute the intraclass correlation coefficients (ICCs). ICC refers to the amount of variance in individual child outcomes that is explained by teacher-level variables. The between-teacher ICC for the total score of the TPF scale was 4 % and for the BC scale was 0.7 %. Although the ICC for the BC scale indicated nonsignificant variance contributed by the teacher level, we included teacher as a covariate for the TPF and BC scales in order to facilitate more consistent comparisons among models for the two scales. In the current study, the time variable was re-centered to simplify the interpretation of the time variable (Singer & Willett, 2003). The time variable was coded in weeks so that week 0 equals the participants’ initial status at the time the intervention began. No other variables were centered. Restricted maximum likelihood estimation was used to estimate parameters in the current study due to the relatively small sample size (Bickel, 2007).

Three MLM models were built; they were the same for both outcome variables. We entered the time variable at level 1. In all models, time slopes were allowed to vary randomly as repeated measures random effects. Effects of teachers were represented by including teacher as a level-2 covariate. Child demographic variables (i.e., gender, special education status) and wave (i.e., Fall, Spring) were entered as level-2 variables. Child gender, special education status, and wave were all dummy coded with male, no special education services, and Fall as the reference groups.

In model 1, we investigated the effects of time on DECA ratings at baseline, mid-intervention (for Fall group), post-intervention, and follow-up. In model 2, we examined demographic variables (i.e., child gender and special education status) as predictors of variance for time on DECA ratings. In model 3, we added intervention wave (i.e., Fall or Spring) as a predictor of variance for time on DECA ratings while retaining demographic variables as fixed effects. Nonsignificant interaction variables (time by demographic factors) from model 2 were dropped from model 3 in an effort to retain the most parsimonious model.
Results

Changes in Child Ratings over Time

Only 1% of data were missing, and they were missing at random resulting from participants skipping over items on the questionnaires. Missing data were imputed through linear regression using the multiple imputation command in SPSS 20. All assumptions for linearity and normal distribution of the dependent variable in repeated measures multilevel modeling were met. MLM estimates, standard errors, beta coefficients, and effect sizes for each of the DECA scales are presented in Tables 3 and 4. The intercept represents the raw score for each scale at baseline. Model 1 tested whether change occurred over the course of the intervention in teacher-rated child behaviors on each of the two DECA scales. Controlling for teacher variance, a significant positive coefficient for time indicated significant increases in TPF scale ratings across the intervention (β = 0.51, p < .001). A significant negative coefficient for time showed significant decreases in BC scale ratings across the intervention (β = −0.05, p = .01). Results for model 1 demonstrated linear change over time in the expected directions for teacher ratings of child behaviors during the intervention period. Random slopes also indicated significant residual, unexplained variance across time points for TPF and BC.

In order to explore additional contributions to variance in teacher scores, in model 2 we added child demographic variables, specifically gender and special education status. Controlling for teacher, time remained significant for TPF and BC when adjusted for special education status and gender. There were also significant main effects for child gender, adjusting for the other variables, such that males received lower baseline TPF ratings (β = −4.57, p = .01) and higher baseline BC ratings (β = 2.75, p = .001) compared to girls. In addition, students who were not identified for special education services received higher TPF ratings at baseline (β = 5.76, p = .01) and lower BC ratings (β = −2.59, p = .01) compared to students eligible for special education. Despite differences in baseline ratings, there were no significant interactions between the child demographic variables and time. These results indicated that children did not differ in their patterns of change over time in teacher ratings as a function of their gender or special education status.

In model 3, we kept time and the demographic variables in the models and added wave as a level-2 variable. Time and the demographic variables continued to demonstrate significant main effects on TPF and BC. There was also a significant main effect for wave on TPF, such that children in the Fall wave started with significantly lower protective factor ratings at baseline than the Spring wave (β = −36.16, p < .001). The interaction between wave and TPF was nonsignificant, indicating that wave did not predict any slope differences in change over time for TPF.

In the BC model, wave did not predict significant differences in baseline ratings; however, there was a significant wave by time interaction (β = 0.07, p = .05) indicating that BC ratings across time differed in the Fall and Spring groups. We probed the significant interaction using a multiple linear regression (MLR) two-way interaction tool to further explain the interaction effects (Preacher, Curran, & Bauer, 2006). We conducted analysis on the simple intercepts and slopes for the wave by time interaction. The simple slope was significantly different from zero for the Fall group but not for the Spring group (see Fig. 1). These results suggest a significant downward trajectory for BC ratings across the intervention period in the Fall group.
Table 4: Results from MLM analyses for BC ratings

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>6.65 (1.14)***</td>
<td>7.71 (1.55)***</td>
<td>8.04 (1.56)***</td>
</tr>
<tr>
<td>Time</td>
<td>-0.05 (0.02)***</td>
<td>-0.05 (0.02)***</td>
<td>-0.10 (0.03)***</td>
</tr>
<tr>
<td>Male</td>
<td>2.75 (0.80)***</td>
<td>2.75 (0.80)***</td>
<td>2.75 (0.80)***</td>
</tr>
<tr>
<td>No special ed.</td>
<td>-2.59 (0.97)**</td>
<td>-2.59 (0.97)**</td>
<td>-2.59 (0.97)**</td>
</tr>
<tr>
<td>Wave</td>
<td></td>
<td>-0.93 (1.55)</td>
<td></td>
</tr>
<tr>
<td>Wave*time</td>
<td></td>
<td>0.07 (0.03)*</td>
<td></td>
</tr>
<tr>
<td>Model fit statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deviance</td>
<td>2977.03</td>
<td>2952.99</td>
<td>2954.03</td>
</tr>
<tr>
<td>AIC</td>
<td>2993.03</td>
<td>2968.99</td>
<td>2970.03</td>
</tr>
<tr>
<td>BIC</td>
<td>3027.55</td>
<td>3003.48</td>
<td>3004.51</td>
</tr>
<tr>
<td>Pseudo r²</td>
<td>0.18</td>
<td>0.28</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Standard errors are in parentheses. For ease of presentation, fixed effects for teachers and random effects for repeated measures of time are not reported in table. Pseudo $r^2 = $ proportional reduction in variance

* $p \leq .05; ** p \leq .01; *** p \leq .001

For BC, adding in the demographic variables in model 2 accounted for an additional 10% reduction in residual variance. Pseudo r^2 in model 3 for both TPF and BC showed no further reduction in variance accounted for by adding in the wave variable. Finally, the deviance and AIC/BIC statistics showed improved model fit for TPF and BC from model 1 to model 2 after including demographic predictors in the model. There was minimal change in model fit from model 2 to model 3 for TPF or BC with the addition of the wave variable.

Changes in Teacher Behavior over Time

Teacher behavior change over time was assessed by examining mean, trend, level, and latency (i.e., points prior to shift in trend or level) of skills per 5-min observation averaged across teachers for baseline, CDI, and TDI phases (Kazdin, 1982). Figure 2 displays the mean level of PRIDE skills (i.e., labeled praise, reflections, behavioral descriptions) across observations for teachers in the Fall group and the Spring group. As this figure shows, both Fall and Spring group teachers demonstrated a low level of PRIDE skills during baseline, with a mean of 7.3 skills per 5-min observation in the Fall group and 6.7 in the Spring group. In TDI, mean PRIDE skills remained relatively horizontal and stable at 17.6 and 27.5 per observation for the two groups, respectively, and well above baseline levels. Inspection of data for individual teachers indicated that six of eight teachers in the Fall group and all 12 teachers in the Spring group showed a consistent pattern of increased PRIDE skills during TCIT.
Engagement and Satisfaction

Teachers showed strong engagement in the program through attendance and homework completion. All but one of the 20 teachers attended every group session or participated in a makeup session if absent, with the exception being one teacher who was on medical leave during the TDI phase. Overall homework completion was 94% for the Fall group and 87% for the Spring group. Teachers also rated strong satisfaction with the TCIT intervention. Consumer satisfaction ratings were highly positive on all dimensions, ranging between agree and strongly agree for the both Fall group ($M = 3.65, SD = 0.33, \text{range} \ 3.49–3.86$) and the Spring group ($M = 3.87, SD = 0.15, \text{range} \ 3.77–3.95$).

Discussion

This study expands on prior investigations of universal Teacher–Child Interaction Training (TCIT) by examining the feasibility of having local school staff independently implement TCIT, following training and participation in an initial delivery of TCIT conducted by a research team. Despite the promise of early childhood preventive interventions, many programs are not effective when put into practice outside of controlled trials, due to difficulties bridging the divide between research and practice (Durlak & DuPre, 2008; Evans & Weist, 2004). Community researchers have emphasized the need for collaborative approaches to facilitate intervention buy-in and engagement by consumers (Trickett & Espino, 2004; Wandersman et al., 2008). Observational data on teacher skills as well as program implementation indices (e.g., teacher attendance, homework completion, consumer evaluations) were comparable across researcher and school-based staff deliveries, suggesting that local school staff were able to implement TCIT effectively.

This study also extends evidence of universal TCIT’s feasibility to a public school setting. As in prior studies with toddler and preschool teachers in a daycare setting (Garbacz et al., 2014; Lyon et al., 2009b), the current results showed that teachers’ observed positive attention skills increased systematically with TCIT intervention, reaching levels at and often above those displayed by teachers in prior studies. High levels of teacher attendance and homework performance during training as well as high consumer satisfaction ratings suggest that the public school teachers were engaged in intervention and perceived it positively, again consistent with previous research (Garbacz et al., 2014; Lyon et al., 2009b). In order to detect change in child behavior as part of a universal prevention program, we used a strength-based measure and found that, controlling for teacher effects, children’s protective factor (TPF) teacher ratings significantly increased and behavior concerns (BC) significantly decreased over the course of the intervention. Local effect size estimates indicated a medium effect of TCIT for TPF and a small effect for BC. Further, we found that although boys and students receiving special education had lower TPF and higher BC ratings at baseline, interactions with time were nonsignificant, suggesting that all students improved according to teacher ratings across time. The only area in which the findings differed across groups was a significant downward trajectory for BC ratings across the intervention period in the Fall (researcher-delivered) group and a nonsignificant downward slope in the Spring (practitioner-delivered) group. The reasons for this difference are unclear and will require further research. Some possibilities include a greater ability to coach discipline skills by the researchers, the greater number of training hours in TDI for the researcher-delivered group, or that teachers may have been more willing to perceive change in children’s BC earlier in the year than later in the year after possible burnout from working with children’s behavioral challenges over time. Overall, the promising results in increased protective factors in children for both researcher- and practitioner-led
groups, and improvements in behavior problems over time in the Fall group, lend support for the applicability of TCIT as a universal prevention model in a public school setting.

The above results need to be considered in light of several study limitations, a chief one being the case study design. Due to pragmatic limitations, this research did not include a controlled experimental group design. The lack of a control group precludes our ability to rule out maturation effects across the school year as an explanation for behavior change and limits interpretation of Fall versus Spring waves (i.e., researcher vs. school implementation). Other variables, such as teacher exposure to other experiences coincident with TCIT, the uniqueness of this school setting and its personnel, or expectancy biases could have been responsible for the observed changes. Also, the current sample of children was mostly white and from middle-class backgrounds, and all the teachers were white, non-Hispanic females. Additional research with more diverse child and teacher samples is needed to test the external validity of the findings. With regard to measurement of child behavior, slightly over one-quarter of the children had turned six before their baseline DECA scores were obtained, placing them outside the age range on which this version of the DECA was normed. A t test comparing the subgroup of children over six to those under six at their baseline was nonsignificant for TPF and BC at baseline; thus, we included all children in the analyses in order to represent the entire sample of children exposed to intervention. However, the fact that validity of the DECA cannot be established for the over six subgroup weakens our ability to draw conclusions.

Further, this study included only one measure of child functioning, whereas multiple measures and informants of child behavior would provide stronger evidence and would be preferable in future research (Carter et al., 2004). The teacher skills assessed in this study were the specific positive attention behaviors taught in CDI; however, due to resource limitations, formal data were not collected on teacher delivery of commands, follow-through strategies, and the sit-and-watch disciplinary procedure taught in TDI. Observational data were collected by TCIT trainers rather than independent observers, whereas the preferred methodology is for observers to be blind to the nature, hypotheses, and phases of the study. Finally, no reliability data were obtained on observations conducted by the local school staff for the Spring group, which limits the internal and statistical validities of the findings. Although adequate levels of inter-observer agreement had been established between researchers and school staff during the Fall group, greater comprehensiveness, standardization, and objectivity in observational coding are needed in future TCIT studies.

Despite the inherent disadvantages of the case study design, one major advantage was that it allowed for flexibility throughout the planning and implementation of TCIT. By approaching our work as a partnership and a trial run, we were able to learn from the changes made by local practitioners to enhance the feasibility of TCIT implementation. For the Spring group, the school staff held didactic sessions on the school’s professional development days rather than on the schedule used in the Fall group to accommodate the off-site researchers. The local staff also included more teachers (12 rather than 8), had slightly fewer total group training hours (12 rather than 17) by consolidating some material, and invited five affiliated staff members (e.g., resource teacher, special education teacher, principal) who had expressed interest in TCIT to sit in as observers in group sessions to increase buy-in for TCIT. In other respects, based on the session protocols, discussions between research and local staff, and review of evaluation measures, the local school staff closely followed procedures used in the initial trial.

In summary, the results provide an encouraging yet tentative indication that the universal TCIT model can be successfully delivered with public school preschool and kindergarten teachers and that, with pretraining and ongoing support, local staff can learn to implement TCIT effectively on their own. The latter finding is particularly important for establishing the real-world feasibility of TCIT, in light of research documenting the research-to-practice gap in evidence-based interventions (Durlak & DuPre, 2008; Fixsen et al., 2010). The current universal TCIT model has yet to be examined in a randomized control design, and this research along with longer follow-up data on both teacher and child behavior are essential to establishing it as an evidence-based preventive intervention. An important further step is a controlled experimental evaluation of the training program for preparing local practitioners. This research will require strong collaborations that can allow for increased research controls to improve interpretability of findings, such as control groups. Further, it will be important to determine the sustainability, fidelity, and effectiveness of TCIT implementation by local school staff over time.

Finally, the findings from this study suggest setting characteristics that may help to make implementation of TCIT by local practitioners more successful (cf., Durlak & DuPre, 2008; Wandersman et al. 2008). Community-level factors related to funding, politics, educational theory and research, and policy are relevant in determining whether TCIT is likely to fit with the local setting’s needs and priorities. Given the financial pressures facing school systems, there is a need to justify investments in any specific program over other worthwhile initiatives. Local school practitioners in this study reportedly were attracted to TCIT because its goals fit with their school district’s needs and priorities. In introducing TCIT to stakeholders (e.g., funders, administrators, and teachers), public school staff
reported that they found it helpful to emphasize the universal prevention focus of TCIT. They characterized the positive communication and effective behavior management skills taught in TCIT as foundational, i.e., basic communication skills that build teachers’ self-confidence and enhance their other competencies.

Organizational factors such as leadership, agency climate, and openness to change also bear consideration in assessing the viability of TCIT in school settings. In the current study, the director of special education and coordinator of mental health services were involved from the beginning of the collaboration, and their leadership roles may have made others more amenable to the program. Further, the school staff strategically reached out to principals in planning and implementing TCIT, beginning with inviting a building principal to join in the site visit to learn about TCIT. The presence of professional support staff who could implement TCIT also was necessary in order to implement the program. Whereas school districts or larger programs are likely to have staff who could potentially function as local TCIT trainers, smaller programs may need to seek outside sources for TCIT training and support.

In conclusion, this pilot study offers encouraging evidence that universal TCIT can be implemented successfully in public school preschool and kindergarten classrooms and that local school staff can learn to deliver TCIT. The study exemplifies the opportunities and challenges that exist when researchers and practitioners join forces to implement a prevention program in a real-world environment. The promising findings lay the groundwork for systematic investigation of TCIT’s effectiveness and sustainability as a universal classroom approach.

Acknowledgments This research was funded in part by a contract from the Alexandria Public Schools in Alexandria, MN. We sincerely thank the teachers, mental health professionals, and administrative leadership at Alexandria Public Schools for their support, dedication, and teamwork. In addition, we appreciate the contributions of Sarah C. Watkin and Rachel Feuer on this research and the valuable consultation of Marc S. Atkins.

References

